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ABSTRACT
A quick and effective estimation of algal density by turbidimetry developed with Chlorella vulgaris cultures

The use of Chlorella vulgaris Beijerinck as a food source for zooplankton requires the optimization of algal-culture conditions
for prolonged growth maintenance. In this study, we developed a method that relates algal density to culture turbidity to
estimate culture biomass. This method was improved by applying digital analysis for algal counting, which promotes accuracy,
low culture disturbance, easy repetition and the rapid acquisition of results. Two 3-L cultures of C. vulgaris, maintained
for two weeks with continuous lighting (eight light-emitting diodes at 50 pumol photons m=-s™!, at 660 nm) and aerators
to prevent algal sedimentation, reached turbidities of 214 and 280 NTUs, respectively. Sample counting was performed
using digital images obtained with an inverted microscope. Aliquot sedimentation was compared with or without previous
homogenization through photographs taken in the central, middle, and peripheral sectors of the Uterméhl settling chambers.
For each procedure, we counted between 17 and 404 individuals image™, requiring, on average, one minute image™". At low
turbidity (<40 NTU), the data dispersion was similar between the two protocols (error range, 16 to 60 %); at higher turbidity,
the direct sedimentation alone gave a larger error (31-50 %) than with prior homogenization (5-13 %). Regression analysis
at low data fit (67 %) suggested that the sedimentation heterogeneity of non-homogenized samples corresponded to a pattern
of settled algae having increasing density from the periphery to the centre of the chamber, but with homogenization, a better
model fitting (99 %) resulted, contributing to greater consistency with that procedure. We consider that this turbidometric
protocol could be used successfully with cultures of algae that have geometrical shapes recognizable by the image software.
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RESUMEN

Una estimacion rdpida y eficaz de la densidad algal por medio de un método turbidimétrico desarrollado con cultivos de
Chlorella vulgaris

El uso de Chlorella vulgaris Beijerinck como alimento para el zooplancton implica la necesidad de optimizar el cultivo de
algas para mantener su crecimiento en el tiempo. En este trabajo se desarrollo un método que relaciona la densidad del cultivo
con la turbidez para estimar la biomasa algal. Esta técnica se ha mejorado mediante la aplicacion del andlisis digital para el
recuento de las algas que promueve la exactitud y reduce el disturbio en el cultivo, con obtencion rdpida y fdcil de resultados
repetibles. Se realizaron dos cultivos de C. vulgaris en recipientes de 3 L con aireacion e iluminacion continua (50 umol
fotones m™ -s7 a 660 nm), alcanzando 214 y 280 NTU, respectivamente. El recuento de las muestras se realizd por medio
de imdgenes digitales tomadas con un microscopio invertido. Se aplicaron dos técnicas para el recuento de las alicuotas: la
sedimentacion directa y la sedimentacion con homogeneizacion previa. Con el fin de comparar el ajuste de ambos métodos de
sedimentacion, las fotografias fueron tomadas en los sectores central, medio y periférico de la cdmara de sedimentacion. Para
ambas técnicas se contaron un minimo de 17 individuos imagen™ y un mdximo de 404 individuos imagen™, con un tiempo
promedio de un minuto por imagen. A niveles bajos de turbidez (<40 NTU) la dispersion de los datos fue similar entre ambas
técnicas (rango error: 16-60 %). Para niveles superiores de turbidez, en la técnica de sedimentacion directa se observo un
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mayor rango de error (31-50 %) mientras que en la técnica con homogenizacion previa oscild entre 5'y 13 %. El andlisis de
regresion evidencio un bajo ajuste de los datos (67 %), que en la sedimentacion sin homogeneizacion responde a un patron
reiterado de aumento de densidad algal desde la periferia hacia el centro de la cdmara de sedimentacion. La inclusion de
una homogeneizacion previa promueve un mejor ajuste del modelo (99 %) y determina un incremento en la consistencia del
método. Con los resultados obtenidos se demuestra que la técnica turbidimétrica desarrollada puede ser utilizada con éxito
en cultivos de especies de algas cuyas formas geométricas sean reconocidas por el procesador de imdgenes.

Palabras clave: Chlorella vulgaris, cultivo, turbidimetria, recuento digital de células, homogeneizacion.

INTRODUCTION

The chlorophyte Chlorella is characterized by
the ability to grow rapidly in culture and a capac-
ity to utilize organic and inorganic substances
as nutritional substrates (Xu et al., 2006; Chin-
nasamy et al., 2010). For these reasons, species
of Chlorella have been investigated for their
inclusion in biotechnological processes. Some
of these algae are used as remediation agents
(Travieso et al., 2006; Altenburger et al., 2008)
and also for atmospheric carbon-dioxide reduc-
tion (Converti et al., 2009; Brennan & Owende,
2010). Moreover, species of Chlorella are used
in the production of oxygen; the production
of specific chemical agents such as pigments,
carbohydrates, lipids, and drugs (Chisti, 2007);
and as food for molluscs, crustaceans, and fish
(De Pauw et al., 1984; Shah et al., 2003).

Species of Chlorella, among various types of
algae, are routinely being produced as a food
source to maintain the stable mass production of
zooplanktonic rotifers and crustaceans (Flores-
Burgos et al., 2003). This chlorophyte is appro-
priate for rotifer cultures, but because of its size,
the alga could be inefficient for cultures of clado-
cerans (Pefia-Aguado et al., 2005).

Furthermore, a variety of methods has been
proposed for monitoring the status of algal
cultures: namely, automated counts with elec-
tronic meters (Javanmardian & Paisson, 1992),
chlorophyll analyses (Travieso et al., 20060),
spectrophotometric determinations at 650 nm
(Wang et al., 2007), turbidity measurements by a
photosensitive transistor included in a turbidostat
(Skipnes et al., 1980), and enumeration by micro-
scope in Neubauer chambers (Aguirre Ramirez

et al., 2007; Ortiz Moreno et al., 2012; Rodas
Gaitan er al., 2012). Nevertheless, with these
methods, there remains a critical lack of a fast
and reliable method for determining algal density
that would allow an adjustment of the parameters
in real time. The traditional techniques of direct
counting (Lund et al., 1958) and spectrophoto-
metric chlorophyll estimation (APHA, 1995) are
not capable of accomplishing this, because they
do not involve procedures that allow the quick
acquisition of data. In contrast, turbidity mea-
surements can be performed instantly. Turbidity
is a measure of light scattering and absorption
caused by the presence of suspended particles
in a fluid. The nature of the particles can be
inorganic (e.g., silt and clay) or organic (e.g.,
bacterioplankton, phytoplankton, and zooplank-
ton) (Wetzel & Likens, 1991). The turbidity is
a function of particle concentration, but also of
particle size and shape. In a pure monospecific
algal culture, where all the suspended particles
are presumably similar, turbidity can be used for
estimating algal density. Although the estimation
of Chlorella vulgaris growth by turbidimetry
has already been reported (Aguirre Ramirez et
al., 2007), the relationship between these two
parameters —i.e., turbidity and algal density— in
the form of a mathematical model has scarcely
been discussed.

On the basis of these considerations, the ob-
jectives of this study were (1) to evaluate tur-
bidimetry as a simple and immediate method for
estimating algal culture density, (2) to determine
a fast and reliable technique for counting indi-
vidual algae to routinely monitor the validity of
the estimation by turbidimetry, (3) to identify the
methodological errors affecting the relationship
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between the two methods of density assessment, (4)
to propose specific modifications of the procedure
to reduce those errors, and (5) to define the scope
and limitations of the technique as proposed.

METHODS

Algal cultures

Two parallel cultures of C. vulgaris Beijerinck
were started in 3-L flasks containing tap wa-
ter (1000 puS/cm) plus nutrients (600 pug P/L as
K,HPO, and 6000 pg N/L as KNO;). Each flask
was isolated from the ambient natural light by
aluminium foil and an alternative high-efficiency
light source (light-emitting diodes: LEDs) was
applied, which permitted the retrieval of algal
cultures with densities at orders of magnitude
greater than with conventional lighting (Skipnes
et al., 1980; Wang et al., 2007). A plate with 8

LEDs, emitting 50 wmol photon m™s~!, was

placed at the mouth of the flask, and the irradi-
ance provided by the plate was measured with
a LI-250A Light Meter (Li-Cor, Lincoln, Ne-
braska, USA) containing a spherical sensor. The
lighting was continuous (i.e., photoperiod, 24:0,
L:D), and aerators were installed to prevent algal
sedimentation. The algal density in each culture
was estimated by means of a 2100P Laboratory
Turbidimeter (Hach, Loveland, Colorado, USA)
and measured in nephelometric units (NTUs). In-
cubations were run for two weeks, at which time
Culture 1 had reached a turbidity of 214 NTU
and Culture 2, a turbidity of 280 NTU. A diluted
sample of each culture was filtered through
Whatman GF/F glass microfiber filters, and the
concentration of chlorophyll ‘a’ was measured
by spectrophotometry (Method 10200 H, APHA,
1995) and calculated according to Lorenzen
(1967). The concentration of chlorophyll ‘a’
was greater than 300 mg/m® in both cultures,
whereas the absence of autospores and dead
cells indicated the healthy condition of the algae.

Figure 1.

Sequence of the experimental steps. A: serial-dilution scheme of algal cultures. B: flow diagram showing the algal-

settling step with and without prior homogenization. C: diagram of the three sectors of the settling-chamber floor (designated as
central, middle, and peripheral) from which digital images were taken with an inverted microscope. Secuencia de los experimentos.
A: Dilucion de los cultivos algales. B: Diagrama de flujo que muestra los pasos de la sedimentacion algal, con 'y sin homogeneizacion
previa. C: Diagrama de los tres sectores del fondo de la cdmara de sedimentacion (denominados central, medio y periférico) para la

toma de las imdgenes digitales con microscopio invertido.
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Table 1. Dilutions performed and aliquots settled in the cultures of Chlorella vulgaris. Diluciones realizadas y alicuotas sedimen-
tadas de los cultivos de Chlorella vulgaris.
Culture dilution Culture 1 Culture 2 Uthermohl Settled
factor turbidity (NTU) turbidity (NTU) dilution factor aliquot (ml)
1:1 214 280 2:100 0.1
1:2 86.1 108 4:100 0.2
1:4 34.7 41.8 8:100 0.4
1:8 15.5 18.3 12:100 0.6
1:16 6.78 8.61 16:100 0.8
1:32 3.77 4.07 20:100 1.0
1:64 2.03 2.36 24:100 1.2

B
O
" ) o
O QD
Q
R & 5
(&)
52 <
O O, O
08 R
0 )
< © a0
0
o fan ODO

Figure 2. Representative images of individuals of Chlorella
vulgaris. A: original microscopic image. B: image processed by
the Image J software. Imdgenes representativas de individuos
de Chlorella vulgaris. A: imagen original de microscopio. B:
imagen procesada mediante el software Image J.

Sample preparation

From the two exponentially growing cultures of
C. vulgaris, we performed six successive 1:2 di-
lutions of the algal suspensions with tap water

to obtain exponentially decreasing turbidities at
seven different levels (Fig. 1A; Table 1). From
each dilution, two 5-ml samples were removed
and fixed with acetic lugol solution (1 % v/v) to
facilitate the algal sedimentation in the settling
chambers (APHA, 1995).

Sedimentation method

In all instances, settling chambers of 5 ml were
used. Because of the high algal concentration, a
specific dilution for each sample had to be per-
formed to maintain the density of the sample
within the optimum range for counting in the
chamber (Table 1). Aliquots were settled in two
ways. First, in the direct settling protocol (DS),
an aliquot of the sample from the algal suspen-
sion was placed in each chamber, and tap water
was added to fill the total volume of the cham-
ber. Therefore, the dilution here was carried out
through the simple mixing involved in the filling
of the settling chamber (Fig. 1B). Alternatively,
in algal settling with previous homogenization
(HS), the dilution of each aliquot from the al-
gal suspension was performed as a separate prior
step in a test tube. The original aliquot was first
diluted in triplicate to a final volume three times
greater than that of the settling chamber, and the
resulting suspension was then homogenized by
bubbling for 5 seconds before immediate trans-
fer of 5 ml to the chamber.

Because of the height of the settling chamber
(2 cm) and the small size of C. vulgaris, all sam-
ples were left for 24 h to insure the complete sed-
imentation of the algae according to the criteria
regarding settling times reported previously (Uter-
mohl, 1958; Willén, 1976; HELCOM, 2014).
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Table 2. Results of the Chlorella vulgaris counts by image analysis: turbidity values, algal densities, and mean percent errors
for protocols with and without homogenization. Resultado del conteo por imdgenes realizado para Chlorella vulgaris: valores de
turbidez, densidad algal y error porcentual promedio para los métodos con y sin homogeneizacion previa.

Non-homogenized sedimentation

homogenized sedimentation

method method
Turbidity (NTU) Mean (individual/image) Error (%) Turbidity (NTU) Mean (individual/ image) Error (%)
214.0 136 49.7 280.0 357 12.7
86.1 153 46.2 108.0 164 4.5
34.7 215 31.9 41.8 143 4.7
15.5 157 35.2 18.3 213 26.3
6.8 140 16.4 8.6 101 22.5
3.9 148 29.2 4.1 66 19.5
2.0 102 46.5 24 125 59.3

Counting methods

Counts of the samples were performed by means
of digital images obtained through an inverted
microscope (40x%). To compare the fit of both sed-
imentation methods, photographs were taken ac-
cording to a predetermined scheme of monitoring
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the settling chamber floor, which involved a sepa-
rate estimation of the central, middle, and periph-
eral sectors (Fig. 1C). All images were processed
with the software Image J version 1.46 (Ferreira
& Rasband, 2012). The results were then trans-
formed into algal densities (individuals/ml) for
subsequent statistical analysis.
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Figure 3. Box-plot diagrams for algal density at the turbidity levels obtained with both settling protocols. A: algal settling without
homogenization (DS). B: settling with prior homogenization (HS). Diagramas de “box-plot” de la densidad de algas en los niveles
de turbidez obtenidos con ambas técnicas de sedimentacion. A: sedimentacion sin homogeneizacion previa (DS). B: sedimentacion

con homogeneizacion previa (HS).
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Statistical analysis

The relationship between algal density and tur-
bidity was evaluated by regression analysis and
the Pearson correlation method with fitting to
a linear model. A factorial analysis of variance
(ANOVA) was performed to test the effect of the
turbidity and the zonal location within the set-
tling chamber on algal density. The algal density
was log transformed to meet the assumption of
variance homogeneity. In cases where the F test
was significant, the multiple range test of Tukey
was used to identify the groups.

RESULTS

Observations from microscopy and the analyses
of the digital images confirmed that most parti-

Ferrando et al.

cles in the sedimentation chamber corresponded
to the cultured algae (Fig. 2). The time required
for the automated counting of the settled algae
through the digital software (approximately one
minute per field) was markedly less than that nor-
mally needed for counting of monospecific cul-
tures (around five minutes per field).

The settled algae from the different aliquot
volumes used for each turbidity level produced
similar final algal concentration values among
the different dilutions. Algal agglomerates or
fields without algae were not observed (Fig. 2).
In the automated sample counting for both proto-
cols, a minimum of 17 and a maximum of 404 in-
dividuals/image were recorded. The mean values
ranged between 102 and 215 individuals/image
for the DS procedure and between 66 and
357 individuals/image for the settling with prior
homogenization (HS) procedure. Two sets of data
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Figure 4. Result of regression analysis between turbidity (NTU) and algal density (individuals/ml). A: algal settling without
prior homogenization (direct settling: DS). B: settling with prior homogenization (HS). C: turbidity versus algal density in each
of the three designated sectors in the settling chamber (central, middle, peripheral) without homogenization. D: turbidity versus
algal density in each of the three designated sectors established in the settling chamber (central, middle, peripheral) after previous
homogenization. Resultado del andlisis de regresion entre la turbidez (NTU) y la densidad algal (individuos/ml). A: Sedimentacion
sin homogeneizacion previa (sedimentacion directa: DS). B: Sedimentacion con homogeneizacion previa (HS).C: turbidez versus
densidad algal para los tres sectores establecidos en la cdmara de sedimentacion (central, medio, periférico) sin homogeneizacion
previa. D: turbidez versus densidad algal para los tres sectores establecidos en la cdmara de sedimentacion (central, medio,

periférico) con homogeneizacion previa.
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Figure 5. Results of Tukey’s post-hoc test showing the ho-
mogeneous groups with turbidities for both methods. Resulta-
dos de la prueba "a posteriori" de Tukey mostrando los grupos
homogéneos de turbidez para ambos métodos.

were identified on the basis of the counting errors
obtained: 1) with turbidity levels greater than 30
NTUs, the error range with the DS procedure
was higher than with the HS procedure and 2)
with lower turbidity levels (<40 NTUs), both
protocols gave comparable errors (Table 2).

The standard deviation for the turbidity data
was higher for the DS protocol (Fig. 3). Plots of
turbidity as a function of algal density (Fig. 4A,
4B) proved to be significantly linear (p < 0.01)
for both settling protocols, but the HS procedure
resulted in less dispersion and therefore better
graphical linearity (R> = 0.99; Fig. 4B). Without
the prior homogenization (Fig. 4C), a clear sep-
aration of the regression curves corresponding to
the three sectors (central, middle, and peripheral)
occurred. Contrastingly, when the algal suspen-
sion had been thoroughly mixed before being left
to settle in the chamber, the plots of the three sec-
tors overlapped (Fig. 4D).

The differences between the curves for the
settling chamber sectors for both protocols, were
non-significant (HS: Fj5 =0.7, p =0.74 and
DS: Fi01 = 0.5, p =0.92), although those dif-
ferences for the overall turbidity versus density
between the two methods were significant (HS:
F6,21 = 456, p < 0.001 and DS: F6,21 = 1543,
p <0.001). ANOVA calculations for the sector
effect within the settling chamber revealed
significant differences for only the DS treatment
(DS: F;51 =12.6, p < 0.001). Tukey’s post-hoc
analysis of these procedures showed significant
differences between the peripheral zone, which
showed lower algal density, and the other two
chamber sectors. By contrast, the HS protocol
resulted in no significant differences among
chamber sectors, with those accordingly forming
a single homogeneous group (Fig. 5).

Without the previous homogenization, over-
lap of the groups was observed throughout most
of the turbidity range, except for the lowest level,
but the separation between the homogeneous
groups was greater for the HS procedure. In this
case, the overlap was restricted to low turbidities,
whereas the middle and high levels of turbidity
became differentiated as separate groups by
Tukey’s post-hoc test (Fig. 6).
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Figure 6. Results of ANOVA analyses of the chamber-sector
effects (C: central, M: middle, P: peripheral) for both proto-
cols. The grey box indicates Tukey’s post-hoc test, showing the
overlapping groups for the non-homogenized protocol. Resulta-
dos del andlisis ANOVA del efecto de los sectores de la cdmara
(C: central, M: medio, P: periférico) para ambos protocolos. El
cuadro gris indica el test “a posteriori” de Tukey mostrando los
grupos homogéneos en el método sin homogeneizacion previa.
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DISCUSSION

Automated electronic counters are suitable for
algal density estimation as an immediate indi-
cator of the state of the culture (Javanmardian
& Palsson, 1992), but the use of those instru-
ments would be excessively expensive for labora-
tory cultures of algae and/or for aquaculture on a
small scale. With the use of chlorophyll ‘a’ anal-
ysis (Travieso et al., 2006), the disadvantage is
the absence of an immediate resolution, prevent-
ing the real-time monitoring and adjustment of
the culture conditions. The same problem applies
to the traditional algal counts (Lund et al., 1958;
Willén, 1976), whose approach also involves a
large investment of time, effort, and training
(Embleton et al., 2003) and provokes sizeable
errors when numerous cells of the same species
are present within each single microscopic field
(Rodas Gaitan et al., 2012). With respect to the
latter method, however, when dilute samples are
used from natural ecosystems (multiple species and
algal densities <16 individuals/field), the ability to
combine taxonomic determination and algal counts
represents a distinct advantage in comparison
with automatic counters (Embleton ef al.,2003).

Our results, in agreement with those of Held
(2011), indicate the usefulness of turbidimetry as
a tool for monitoring the algal density of cul-
tures in real time, which offers the advantage of
obtaining an assessment of the culture’ biomass
without algal loss, thus allowing an adjustment
of the conditions at the moment when the culture
needs such an intervention. To apply turbidime-
try in this way, however, an empirical relation-
ship linking the results of algal density counts
with the associated turbidity values must be de-
veloped. According to Held (2011), this relation-
ship must be updated with calibration curves for
each algal species, especially upon consideration
of the variable relationship between algal size
and culture conditions(Lee & Palsson, 1994). Be-
cause the dependency of turbidity on algal num-
bers may vary in the same culture over time, the
generation of calibration curves must be planned
as a continuous process that includes the updat-
ing of the algal counts and their correlation with
the culture turbidity.

Establishing the relationship between the al-
gal density of a culture and its turbidity involves
two principal difficulties. First, in algal cultures
at high densities, the algal suspension must be di-
luted to obtain aliquots within a suitable density
range for the proper identification of the algae
during the processing of the image by the soft-
ware. In this regard, agglomerations that could
prevent algal identification by the automated
counting software were not present, nor were
fields with low densities or with the absence of
individuals observed, in the quantitative analyses
carried out to construct the calibration curves
for this technique. These sources of error —i.e.,
agglomerations and low densities, as cited by
Embleton et al. (2003) and Mazziotti & Vadrucci
(2007)— were avoided in the procedure described
here through the judicious choice of aliquot
dilutions for each algal density. Second, an ex-
cessive dispersion of the counting results would
diminish the ability of the method to estimate ac-
curately the algal density by turbidimetry. In our
analysis, this problem became evident with the
DS protocol and accordingly promoted a marked
heterogeneity in the algal spatial distributions
within the settling chamber with a consequent
non-uniformity in the counting results for each
sample. Using Neubauer chambers, Rodas
Gaitdn et al. (2012) found the same difficulty in
algal cultures that became pronounced at high
densities. The uniform sedimentation through the
use of the HS protocol allowed a more reliable
assessment of the relationship between turbidity
and algal density, particularly when the turbidity
exceeded 40 NTUs.

The implementation of cultures under low ir-
radiance (West, 2005), and thus at reduced main-
tenance costs, allows the development of cul-
tures that reach a maximum photosynthetic ef-
ficiency with chlorophyll ‘a’ concentrations ex-
ceeding 300 mg/m? and low levels of algal mor-
tality. This latter feature is significant for the pur-
poses of image counting because the probabil-
ity of scoring spores and/or dead cells is min-
imal. We believe that this technique is suitable
for use in laboratory experiments. Furthermore,
the method of digitalized algal counting signif-
icantly accelerated the process of validating the
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relationship between turbidity and algal density
in contrast to what has been proposed by Em-
bleton et al. (2003), who were able to perform
manual counts over a short time period because
of the lower densities of the cultures (16 individ-
uals/field). In high density cultures, the observer
error increases as a result of the large numbers of
algae within the visual field and the small size of
the algae, as stated by Lund et al. (1958). For this
reason, the use of digital image counting vastly
improves the counting accuracy.

We consider that algal density determination
by turbidimetry may be applicable to those uni-
cellular forms having a geometrical shape that
can be recognized by the image processor. As
part of these experiments, the method was also
applied to Monoraphidium minutum and M. tor-
tile and gave similar results. We also suggest
that this type of turbidimetry with image pro-
cessing could also be used for cultures of other
coccal genera, such as Scenedesmus and Chlamy-
domonas, as well as for cryptomonads.

ACKNOWLEDGEMENTS

The authors wish to thank the two anonymous
reviewers for their valuable comments on the
manuscript. We are grateful to Dr. Donald F. Hag-
gerty, a retired career investigator and native En-
glish speaker, for improving the English of the final
version of the manuscript. Scientific Contribution
Institute of Limnology Dr. R. A. Ringuelet N° 957.

REFERENCES

ALTENBURGER, R, J., M. SCHMITT & J. RIEDL.
2008. Bioassay with unicelular algae: deviations
from exponential growth and its implications for
toxicity test results. Journal of Environmental Qua-
lity, 37: 16-21.

AGUIRRE RAMIREZ, N. J., J. A. PALACIO BAE-
NA, I. C. CORREA OCHOA & E. HERNAN-
DEZ ATILIANO. 2007. Ensayos de bioestimu-
lacion algal con diferentes relaciones Nitrogeno:
Fésforo, bajo condiciones de laboratorio. Revista
Ingenierias Universidad de Medellin, 6: 11-21.

APHA. 1995. Standard methods for analysis of water
and wastewater. 19 Ed. American Public Health
Association, Washington D.C. USA.

BRENNAN, L. & P. OWENDE. 2010. Biofuels from
microalgae-A review of technologies for produc-
tion, processing, and extractions of biofuels and
co-products. Renewable & Sustainable Energy Re-
views, 14: 557-577.

CHINNASAMY,S., A. BHATNAGAR, R. HUNT
& K. C. DAS. 2010. Microalgae cultivation in a
wastewater dominated by carpet mill effluents for
biofuel applications. Bioresources Technology,
101: 3097-3105.

CHISTL Y. 2007. Biodiesel from microalgae. Bio-
technology Advances, 25: 294-306.

CONVERTL A., A. A. CASAZZA, E. Y. ORTIZ, P.
PEREGO & M. DEL BORGHI. 2009. Chemical
engineering and processing: process intensifica-
tion. Chemical Engineering Processes, 48: 1146—
1151.

DE PAUW,N., J. MORALES & G. PERSOONE.
1984. Mass culture of microalgae in aquaculture
systems: Progress and constraints. Hydrobiologia,
116-117: 121-134.

EMBLETON, K. E.,C. E. GIBSON & S.I. HEANEY.
2003. Automated counting of phytoplankton by
pattern recognition: comparison with a manual
counting method. Journal of Plankton Research,
25: 669-681.

FERREIRA,T. & W. RASBAND. 2012. Imagel
User guide. http://rsbweb.nih.gov/ij/docs/guide/
user-guide.pdf)

FLORES-BURGOS,J., S. S. S. SARMA & S. NAN-
DINI. 2003. Population growth of zooplankton
(rotifers and cladocerans) fed Chlorella vulgaris
and Scenedesmus acutus in different proportions.
Acta Hydrochimica et Hydrobiologica, 31: 240-
248.

HELCOM. 2014. Manual for Marine Monitoring in
the COMBINE Programme of HELCOM. Annex
6: Guidelines concerning phytoplankton species
composition, abundance and biomass (http://hel
com.fi/action-areas/monitoring-and-assessment/
manuals-and-guidelines/combine-manual

HELD, P. 2011. Monitoring of Algal Growth Using
their Intrinsic Properties. Use of a Multi-Mode
Monochromator-based Microplate Reader for Bio-
fuel Research. Application Note, Biofuel Re-
search. BioTek Instruments, Inc., Vermont.

JAVANMARDIAN,M. & B. . PALSSON. 1992.
Continuous photoautotrophic cultures of the euka-



406 Ferrando et al.

ryotic alga Chlorella vulgaris can exhibit stable
oscillatory dynamics. Biotechnology Bioengineer-
ing, 39: 487-497.

LEE,C. & B. @. PALSSON. 1994. High-density al-
gal photobioreactors using light-emitting diodes.
Biotechnology Bioengineering, 44: 1161-1167.

LORENZEN, C. J. 1967. Determination of chloro-
phyll and pheopigments spectrophotometric equa-
tions. Limnology and Oceanography, 12: 343-346.

LUND,J. W. G, C. KIPLING & E. D. LE CREN.
1958. The inverted microscope method of estimat-
ing algal numbers and the statistical basis of esti-
mations by counting. Hydrobiologia, 11: 143-170.

MAZZIOTTL,C. & M. R. VADRUCCI. 2007.
Methodological aspects of phytoplankton anal-
ysis in transitional waters. Transitional Waters
Bulletin, 3: 9-12.

ORTIZ MORENO, M. L., C. E. CORTES CASTI-
LLO, J. SANCHEZ VILLARRAGA, J. PADILLA
& A. M. OTERO PATERNITA. 2012. Evaluacién
del crecimiento de la microalga Chlorella sorokini-
ana en diferentes medios de cultivo en condiciones
autotréficas y mixotroficas. Orinoquia, 16: 11-20.

PENA-AGUADO,F.,, S. NANDINI & S. S. S. SAR-
MA. 2005. Differences in population growth of ro-
tifers and cladocerans raised on algal diets supple-
mented with yeast. Limnologica, 35: 298-303.

RODAS GAITAN, H. A., H. RODRIGUEZ FUEN-
TES, G.FLORES MENDIOLA, J. A. VIDALES
CONTRERAS, J. ARANDA RUIZ & A. 1. LUNA
MALDONADO. 2012. Efecto de la densidad celu-
lar de inoculacién en el crecimiento de Chlore-
lla vulgaris CLV2 cultivada bajo condiciones mi-
xotroficas. Revista Fitotécnia Mexicana, 35: 83—-86.

SHAH,M. M. R, M. J. ALAM & M. Y. MIA. 2003.
Chlorella sp.: Isolation, pure culture and small
scale culture in brackish water. Bangladesh Jour-
nal of Scientific and Industrial Research, 38: 164—
174.

SKIPNES, O., I. EIDE & A. JENSEN. 1980. Cage
Culture turbidostat: a device for rapid determina-
tion of algal growth rate. Applied and Environmen-
tal Microbiology, 40: 318-325.

TRAVIESO, L., F. BENITEZ, E. SANCHEZ, R.
BORJA, A. MARTIN & M. F. COLMENAREJO.
2006. Batch mixed culture of Chlorella vulgaris
using settled and diluted piggery waste. Ecological
Engineering, 28: 158-165.

UTERMOHL, H. 1958. Zur Vervollkommnung der
quantitative Phytoplankton-Methodik. Mitteilun-
gen Internationalen Vereinigung fiir theoretische
und angewandte Limnologie, 9: 1-38.

WANG,C., C. FU & Y. LIU. 2007. Effects of using
light emitting diodes on the cultivation of Spirulina
platensis. Biochemical Engineering Journal, 37:
21-25.

WEST, J. A. 2005. Long-Term Macroalgal Culture
Maintenance 157-165 Algal Culturing Techniques
Edited by Robert A. Andersen Elsevier.

WETZEL, R. G. & G. E. LIKENS. 1991. Limnologi-
cal analyses. Springer-Verlag, New York. USA.

WILLEN, E. 1976. A simplified method of phyto-
plankton counting. British Phycological Journal,
11: 265-278.

XU, H., X. MIAO & Q. WU. 2006. High quality
biodiesel production from microalga Chlorella
protothecoides by heterotrophic growth in fer-
menters. Journal of Biotechnology, 126: 499-507.





