Growth and age structure in captive and wild stocks of the endangered western ruivaco Achondrostoma occidentale (Cyprinidae)

D. Mameri1,2,*, C. Sousa-Santos1, J. I. Robalo1 and M.F. Magalhães2

1 MARE, ISPA – Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal.

* Corresponding author: dmameri@outlook.pt

Received: 11/04/17 Accepted: 14/11/17

ABSTRACT

Growth and age structure in captive and wild stocks of the endangered western ruivaco Achondrostoma occidentale (Cyprinidae)

Declines in freshwater fish populations are occurring at a fast rate, increasing the importance of ex-situ conservation programs supported by sound knowledge of population dynamics and life-history traits of the target species. We analysed the growth and age structure of wild and captive stocks of the western ruivaco Achondrostoma occidentale, a Portuguese endangered cyprinid, targeted for captive breeding and restocking since 2007. Specifically, we compared maximum size, longevity, and length-at-age among captive and wild populations, restocked and non-restocked. We found considerable variation in length-at-age and longevity between captive-bred and wild fish, with the former generally growing faster and living longer. Analysis of length-age distributions among wild populations suggested a positive effect of restocking actions in fish abundance. Results highlight the value of captive breeding for the conservation of endangered cyprinids, and reinforce the need for detailed data on life-history trait variation between captive and wild stocks to assess the efficiency of ex-situ conservation programs.

Key words: captive breeding, endangered cyprinids, Mediterranean rivers, recruitment, life-history traits
INTRODUCTION

Freshwater ecosystems are among the most endangered ecosystems in the world and declines in their biodiversity are expected to be more intense than in terrestrial or marine environments, affecting invertebrates, amphibians and fishes (Sala et al., 2000; Cooke et al., 2012). Cyprinids, the most diverse family of freshwater fishes, currently face a wide range of threats, including habitat degradation, damming and water extraction, invasive species and climate change (Clavero et al., 2010), and are thus considered among the most threatened biota worldwide (Hermoso & Clavero, 2011).

Captive breeding is increasingly valuable in the conservation of Mediterranean endemic freshwater fishes (Carrizo et al., 2013; Maceda-Veiga, 2013; Sousa-Santos et al., 2014). In particular, Iberian cyprinids, with one of the highest proportions of threatened species recorded to date (Darwall et al., 2008), are good candidates for captive breeding and stock enhancement programs (Gil et al., 2010).

In Portugal, there is an ongoing captive breeding program targeting endangered and critically endangered Iberian cyprinids, since 2007 (Sousa-Santos et al., 2014). This program involves the capture of breeders in wild populations, the maintenance of brood stocks for three consecutive generations, the restocking of wild populations with captive-reared fish (ideally after river management actions) and, afterwards, the foundation of new stocks of wild breeders to proceed with the program, maximizing the preservation of the original genetic pool of target populations (see Sousa-Santos et al. 2014 for details).

Among other species, this captive breeding program has been focused on the western ruivaco Achondrostoma occidentale (Robalo, Almada, Sousa Santos, Moreira & Doadrio 2005), a cyprinid listed as “Endangered” in the IUCN Red List.

<table>
<thead>
<tr>
<th>River of origin</th>
<th>Breeding facilities</th>
<th>Year of foundation</th>
<th>Number of breeders</th>
<th>Year of release</th>
<th>Number of fish released</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcabrichel</td>
<td>VGA</td>
<td>2006</td>
<td>16*</td>
<td>2011</td>
<td>400</td>
</tr>
<tr>
<td>Alcabrichel</td>
<td>VGA</td>
<td>2011</td>
<td>60</td>
<td>2013</td>
<td>446</td>
</tr>
<tr>
<td>Alcabrichel</td>
<td>CS</td>
<td>2009</td>
<td>45*</td>
<td>2011</td>
<td>400</td>
</tr>
<tr>
<td>Alcabrichel</td>
<td>CS</td>
<td>2011</td>
<td>60</td>
<td>2013</td>
<td>1.190</td>
</tr>
<tr>
<td>Alcabrichel</td>
<td>CS</td>
<td>2013</td>
<td>60</td>
<td>2015</td>
<td>2.482</td>
</tr>
<tr>
<td>Alcabrichel</td>
<td>CS</td>
<td>2015</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sizandro</td>
<td>CS</td>
<td>2009</td>
<td>19*</td>
<td>2013</td>
<td>1.309</td>
</tr>
<tr>
<td>Sizandro</td>
<td>CS</td>
<td>2013</td>
<td>60</td>
<td>2016</td>
<td>1.259</td>
</tr>
<tr>
<td>Sizandro</td>
<td>CS</td>
<td>2016</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Safarujo</td>
<td>VGA</td>
<td>2012</td>
<td>12*</td>
<td>2015</td>
<td>350</td>
</tr>
<tr>
<td>Safarujo</td>
<td>VGA</td>
<td>2015</td>
<td>60</td>
<td>2016</td>
<td>448**</td>
</tr>
</tbody>
</table>
Growth and age structure of the western ruivaco

(IUCN 2016) that was only described in 2005 (Robalo et al., 2005). This small-sized species (<100 mm total length) is endemic to three small basins (<40 km²) in western Portugal (Fig. 1), where it is found in low numbers and faces severe pollution and water scarcity (Robalo et al., 2008).

The captive breeding of the western ruivaco has been very successful, and 8284 captive-reared fish were released in the wild between 2011 and 2016 (Sousa-Santos et al., 2014; Sousa-Santos unpublished data). However, the life-history traits of wild and captive populations have yet to be assessed, although this was considered critical to evaluate the efficiency of conservation measures designed for freshwater fishes (e.g. Ribeiro et al., 2000; Vinyoles & De Sostoa, 2007). In order to fill this gap, this study quantified the variation in growth and age structure of western ruivaco in captive and restocked and non-restocked wild populations. Assuming that fish generally have a shorter life span and smaller body size in fluctuating versus stable environments (e.g. Schlosser, 1990; Winemiller & Rose, 1992), we predicted that fish bred in captivity would live longer and grow faster than wild fish. As this would likely result in longer reproductive span, and production of more and larger eggs that favour larval survival (Matthews, 1998), we also predicted that captive-reared fish will have positive effects in the recruitment and structure of restocked populations, contingent on local environmental conditions. Results were used to discuss the value of captive breeding programs of threatened cyprinids.

MATERIAL AND METHODS

Study populations

Wild populations (henceforth designated by wild stocks) of the western ruivaco occur in the Alcabrichel (25 km, 39°1’N, 9°1’W), Sizandro (37 km, 39°0’N, 9°1’W) and Safarujo rivers (18 km, 39°0’N, 9°2’W), in the Torres Vedras and Mafra municipalities, north of Lisbon. All these rivers are typically Mediterranean, drying to isolated pools during summer-early fall (Gasith & Resh, 1999). There is a high human settlement in the catchments, resulting in severe habitat destruction and water pollution (Robalo et al., 2005; Robalo et al., 2008). Along the margins, the high abundance of exotic giant cane Arundo donax prevents native vegetation from growing and stabilizing the river banks (Mameri, 2015).

Other native fish in the rivers are the loach Cobitis paludica (deBuen, 1930) and the European eel Anguilla anguilla (Linnaeus, 1758). Non-native fish are restricted to a few Gambusia holbrooki in the Sizandro River, but non-native American crayfish Procambarus clarkii (Girard, 1852) has been increasing in density in the last few years, especially in the Alcabrichel and Sizandro rivers (Sousa-Santos and Mameri unpublished data).

The first captive populations (henceforth designated by captive stocks) of western ruivaco from the Alcabrichel, Sizandro and Safarujo rivers were founded in 2006, 2009 and 2012, at the Vasco da Gama Aquarium and the Campelo Station (Table 1). Although an effort was made to maximize the number of breeders and guarantee the representation of the genetic pool of each target population, the initial stocks of breeders, between 12 and 45 fish, were largely constrained by the low abundance of fish in the wild (Table 1). As the program proceeded and all captive-bred individuals were released in the wild, a second round of captive breeding was initiated using slightly larger stocks of breeders, including 30 wild and 30 captive bred fish (Sousa-Santos et al., 2014). Captive stocks were kept in outdoor tanks, under natural conditions of light and temperature (but see Sousa-Santos et al., 2014, for details).

In order to reduce vulnerability to genetic diversity loss, interbreeding depression and deleterious mutations associated with small population size (e.g. Madeira et al., 2005; Hoffman & Williams, 2009), fish were released in the wild generally after three consecutive generations in captivity, and new stocks of breeders were founded as described above (Sousa-Santos et al., 2014).

To maximize the chances of survival and persistence of captive-bred fish in the wild, fish were only released in upper river stretches with adequate habitats and no pollution (Sousa-Santos et al., 2014). When this study started, in September 2014, restocking actions had already been conducted twice in the Alcabrichel, in 2011 and
2013, and once in the Sizandro, in 2013, but not in the Safarujo River (Table 1).

Fish sampling

Wild stocks of western ruivaco from the Alcabrichel, Sizandro and Safarujo rivers were sampled between September and October 2014, in isolated dry-season pools. Fish were sampled in 6 pools in the Alcabrichel, 3 in the Sizandro, and 5 in the Safarujo. Each pool was electrofished in an upstream zigzag pattern, using a SAMUS 725G portable device fitted with a single anode, and discharging 1000 V electric impulses (frequency: 80 Hz; duration: 1.40 ms). Fish were counted, measured for fork-length (to the nearest mm), and returned to the stream.

Captive stocks were sampled at the Vasco da Gama Aquarium (VGA) and Campelo Station (CS) between 2012 and 2013 (Table 1) were sampled in March 2015, shortly before the spawning season, using hand nets (2 mm mesh). Prior to sampling, the water depth in each tank was lowered to approximately 50 cm to increase netting efficiency. Fork-length (FL) was measured before release, except individuals below 60 mm from the Safarujo, which were merely counted due to logistical constraints.

Age and growth analyses

Age distribution of each stock was estimated using the stratified Ketchen’s procedure (Ricker, 1975). Individuals were divided into FL groups with 10 mm intervals. Scales were removed from individuals above 40 mm (Table 2). Smaller fish were not considered for analysis because handling could result in high mortality risk. Scales from the third row below the dorsal fin were mounted on microscope slides and the annuli were interpreted using the criteria of Bagenal & Tesh (1978). All scales were read twice and a third reading was made if the first two differed; when two of the three measures did not agree, the scale was discarded. Age determinations were used to construct separate age-length keys for each stock. This allowed the conversion of length distributions into age distributions, assuming age 0 for fish below 60 mm from the captive stock of the Safarujo and below 40 mm from the remaining stocks. Comparisons of length distributions were restricted to wild stocks only, to account for changes in size classes caused by different sampling seasons in wild and captive stocks.

Growth of each individual fish was described in terms of length increments between annuli. The total radius and distance from the focus to each annulus was measured for each scale. Length at annulus formation was back-calculated.

Table 2. Wild and captive stocks of western ruivaco surveyed for age and growth analyses. For each stock, we present the number of individuals measured for fork-length (N) and sampled for scales (n). Note that wild and captive stocks were sampled September-October 2014 and March 2015, respectively. *Stocks selvagens e de catteivo de ruivaco-do-Oeste amostrados para determinação da idade e taxas de crescimento. Para cada stock é apresentado o número de indivíduos para os quais foi medido o comprimento à farca (N) e retiradas escamas (n). Nota: a amostragem dos stocks selvagens e de catteivo decorreu em Setembro-Outubro de 2014 e Março de 2015, respectivamente.*

<table>
<thead>
<tr>
<th>River</th>
<th>Stock</th>
<th>Code</th>
<th>N</th>
<th>n</th>
<th>Fork length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Alcabrichel</td>
<td>Wild</td>
<td>ALC_wild</td>
<td>376</td>
<td>98</td>
<td>46 ± 21</td>
</tr>
<tr>
<td>Alcabrichel</td>
<td>Captive</td>
<td>ALC_cap</td>
<td>148</td>
<td>39</td>
<td>73 ± 29</td>
</tr>
<tr>
<td>Sizandro</td>
<td>Wild</td>
<td>SIZ_wild</td>
<td>494</td>
<td>27</td>
<td>54 ± 20</td>
</tr>
<tr>
<td>Sizandro</td>
<td>Captive</td>
<td>SIZ_cap</td>
<td>102</td>
<td>28</td>
<td>58 ± 13</td>
</tr>
<tr>
<td>Safarujo</td>
<td>Wild</td>
<td>SAF_wild</td>
<td>135</td>
<td>37</td>
<td>56 ± 21</td>
</tr>
<tr>
<td>Safarujo</td>
<td>Captive</td>
<td>SAF_cap</td>
<td>385</td>
<td>51</td>
<td>81 ± 24</td>
</tr>
</tbody>
</table>

Limnetica, 37(1): 105-115 (2018)
from linear regression equations ($R^2 \geq 0.87$, $p < 0.001$) following the body proportional hypothesis (Bagenal & Tesh, 1978). Prior to back calculations, scale increments from the last annuli were analysed to account for variation in the timing of annulus formation associated with differences in sampling dates between wild and captive stocks. There was no significant variation in scale increments, with mean distances from the last annulus to the scale margin ranging between 181.42 and 182.67 mm in captive and wild stocks, respectively. Therefore, we considered that measurable differences in length increments between wild and captive stocks could indicate variation in fish growth patterns.

Data analyses

Prior to analysis, data were assessed for normality and homogeneity of variances, using the
Shapiro-Wilk and the Levene tests, respectively. Variation in fork-length was assessed among wild stocks only, using the Kruskal-Wallis and the Dunn’s post-hoc tests. Back-calculated length-at-age was compared among wild and among captive stocks using one-way ANOVA and Tukey HSD post-hoc tests, and between pairs of wild and captive stocks using t-tests for the Alcabrichel and Safarujo rivers, and the Mann-Whitney test for the Sizandro River. Analyses were conducted using the R software, version 3.3.1 (R Development Core Team 2016), and statistical significance testing was assessed at p<0.05.

RESULTS

Fish in wild stocks ranged from 18 mm to 130 mm (Table 2). There was significant variation in fork-length among stocks (H=70.209, p<0.001),

<table>
<thead>
<tr>
<th>Population</th>
<th>Age (years)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC_wild</td>
<td>Mean FL (SD)</td>
<td>56.2 (3.4)</td>
<td>68.7 (1.8)</td>
<td>81.1 (2.2)</td>
<td>94.0 (2.9)</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>80</td>
<td>28</td>
<td>13</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>ALC_cap</td>
<td>Mean FL (SD)</td>
<td>60.2 (3.0)</td>
<td>77.7 (3.2)</td>
<td>102.2 (4.2)</td>
<td>116.5 (5.3)</td>
<td>130.9 (2.9)</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>39</td>
<td>29</td>
<td>16</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>SIZ_wild</td>
<td>Mean FL (SD)</td>
<td>72.5 (3.8)</td>
<td>86.6 (3.8)</td>
<td>102.4</td>
<td>128.3</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>SIZ_cap</td>
<td>Mean FL (SD)</td>
<td>65.5 (2.0)</td>
<td>86.0 (0.6)</td>
<td>101.5 (3.2)</td>
<td>119.5</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>SAF_wild</td>
<td>Mean FL (SD)</td>
<td>59.7 (3.7)</td>
<td>73.0 (3.2)</td>
<td>85.1 (2.8)</td>
<td>96.4</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>20</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>SAF_cap</td>
<td>Mean FL (SD)</td>
<td>63.8 (2.8)</td>
<td>80.9 (2.7)</td>
<td>101.8 (2.6)</td>
<td>122.5 (4.3)</td>
<td>133.5 (0.9)</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>30</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
with fish from the Safarujo (mean ± SD: 56±21 mm; range: 23–107 mm) and Sizandro (54±20 mm; 19–130 mm) being larger than those from the Alcabrichel (46±21mm; 18–110 mm). Among captive stocks, maximum length was found in individuals from the Alcabrichel (155 mm, mean ± SD: 73±29 mm), followed by those from the Safarujo (141 mm, 81±24 mm) and Sizandro (125 mm, 58±13 mm).

Wild stocks only included fish aged 0 to 4, while fish reached age 5 in the captive stocks of the Alcabrichel and Safarujo rivers (Fig. 1). Both wild and captive stocks were dominated by age 0 fish (73.1 % and 53.7 %, respectively) and, among wild stocks, a considerable percentage of age 1 fish was found in the Alcabrichel (16.8 %). Fish age 2 were rare in the captive stock of the Safarujo (8.0 %) and fish age 3 were absent in both the wild and captive stocks of the Sizandro.

Back-calculated length-at-age 1 varied significantly among wild stocks (F=143.75, d.f.=2, p<0.001), with the highest and lowest growth rates in the Sizandro and Alcabrichel rivers, respectively (Table 3). There were also significant differences in growth among captive stocks (F=13.99, p<0.001), with individuals from the Alcabrichel attaining larger sizes than the remainder (Table 3). When comparing wild and captive stocks, significant differences in length-at-age 1 were found for all rivers. Individuals were smaller in wild than in captive stocks of the Alcabrichel (T=-6.273, p<0.001) and the Safarujo (T=-4.262, p<0.001), but the reverse pattern was found for the Sizandro (Z=-4.805, p<0.001).

DISCUSSION

Iberian freshwater fishes face important conservation threats, with 25 of the 31 cyprinids classified as vulnerable, endangered or critically endangered in the IUCN Red List (IUCN, 2016). In this situation, ecological research should increasingly support conservation efforts, particularly for species with restricted distributions, suffering progressive and generalized declines, such as the western ruivaco *A. occidentale*.

Overall, patterns in growth, age and longevity of the wild and captive stocks of western ruivaco highlighted in this study were consistent with those described for other small Iberian cyprinids, with individuals growing quickly in the first year and having a short life-span (e.g. Fernandez-Delgado & Herrera, 1995a; Fernandez-Delgado & Herrera, 1995b; Pires et al., 2000; Magalhães et al., 2003; Ribeiro et al., 2003). There was, however, considerable variation in size and growth of the western ruivaco, both among wild and captive stocks. Among wild stocks, individuals in the Safarujo and Sizandro were larger than in the Alcabrichel, and tended to grow faster in the Sizandro and slower in the Alcabrichel. These patterns may at least partially reflect variation in habitat conditions among rivers, with previous habitat surveys indicating that dry-season pools in the Sizandro were larger and had higher instream and macrophyte cover than in the Alcabrichel and Safarujo (Mameri et al., 2016). Most likely this reflects higher refugia availability and habitat stability (Maddock, 1999; Petry et al., 2003), which may favour growth, as suggested for other Iberian cyprinids (Aparicio & Sostoa, 1998; Ferreira et al., 2007).

Both wild and captive stocks were dominated by age 0 fish, but there was an increase in relative abundance of age 1 fish in the Alcabrichel and Sizandro, where restocking actions had been carried out. The high abundance of age 0 fish in all rivers reflects successful recruitment in 2014. The high proportion of age 1 fish in the Alcabrichel likely reflects some positive effects of restocking with captive-reared individuals conducted in 2013. Although it is not possible to validate this hypothesis based in this study, few age 1 fish were found in the Safarujo, consistent with the lack of previous restocking actions and population enhancement effects.

Length-at-age 1 was higher in captive fish versus Alcabrichel and Safarujo wild stocks, suggesting that growth has been favoured by mild conditions prevailing in captivity, including high water quality and availability, stable food intake, no extreme flow changes and consequently low energy expenditures (King et al., 2003; Piffady et al., 2010; Grossman et al., 2016). Indeed, conditions may be harsh for fish in the Alcabrichel, which has been classified as “Very polluted” (Teixeira et al., 2008), and in the Safarujo, which
tends to be severely affected by summer droughts, lacking surface flow for most of its extension. However, the growth pattern between captive and wild stocks was not general, with fish from the Sizandro tending to grow faster in the wild, probably reflecting particularly favourable local conditions, as discussed above.

Final remarks

This study highlights that fish raised in captivity may tend to attain larger size, grow faster and live longer than in the wild. This improved performance, which is also associated with better body condition (Mameri, 2015), can potentially result in higher fitness and reproductive potential for captive than for wild individuals (e.g. De Miguel et al., 2013). Future studies on the survival of captive fish released in the wild and the abundance of ages 0 and 1 are thus needed to clarify the effects of restocking actions on recruitment and population recovery.

Under normal circumstances and in the absence of mass mortality inducing factors, the recruitment of restocked populations can be enhanced throughout generations, contributing to a higher representation of all age classes and to minimizing extinction risk due to demographic factors. Because small populations of endangered species tend to be disturbed sooner by demographic than by genetic factors (Lande, 1988; Caro & Laurenson, 1994; Caughey, 1994; Lacy, 2000), population reinforcements may constitute an effective conservation tool, when combined with in-situ measures targeting river habitat restoration and water quality improvement (Sousa-Santos et al., 2014). Nevertheless, more baseline information on the species targeted for captive breeding and restocking is critical to increase the effectiveness of these conservation measures in terms of population size, structure and persistence in the wild.

ACKNOWLEDGEMENTS

This study was conducted as part of the ex-situ conservation project targeting endangered cyprinid fish species endemic to Portugal (partners: ISPA, Quercus, Vasco da Gama Aquarium, Figueiró dos Vinhos Municipality and Veterinary Medicine Faculty of the University of Lisbon). We thank the staff from the Vasco da Gama Aquarium and the Campelo Station, for allowing and supporting the sampling of captive stocks of the western ruivaco. Thanks are also due to André Levy for the English revision and the two anonymous referees for their insightful comments on earlier versions of the manuscript. Permits for field work were given by ICNF. This study was financed by the European Fund for Economic and Regional Development (FEDER) through the Program Operational Factors of Competitiveness (COMPETE) and National Funds through the FCT - Portuguese Foundation of Science and Technology, under the Plurianual Program UI&D 331/94, the strategic projects UID/MAR/04292/2013 and UID/BIA/00329/2013 granted to MARE and to CE3C, respectively, and the grants awarded to C. Sousa-Santos (SFRH/BPD/29774/2006 and MARE-ISPA/BPD/001/2015).

REFERENCES

CLAVERO, M., V. HERMOSO, N. LEVIN & S. KARK. 2010. Geographical linkages between threats and imperilment in freshwater fish in

MADDOCK, I., & H. GROVE. 1999. The impor-
This study was conducted as part of the ex-situ enhancement throughout generations, contributing to population recovery. Gaia Scientia. DOI: 10.21707/gs.v10.n02a01

SOUSA-SANTOS, C., F. GIL & V. C. ALMADA. 2014. Ex situ reproduction of Portuguese endangered cyprinids in the context of their conservation. Ichthyologi-
Wild stocks of western ruivaco from the more baseline information on the species target-affecting invertebrates, amphibians and fishes counted, measured for fork-length (to the nearest a higher representation of all age classes and to absence of mass mortality inducing factors, the captive and wild stocks was not general, with fish extension. However, the growth pattern between wild stocks only, using the Kruskal-Wallis and, 2013). Future studies on the survival of et al.

Patterns in Freshwater ecosystems are among the most INTRODUCTION

et al. 2008), are good candidates for captive PARENT. 2010. Quantifying the effects of two Mediterranean stream fishes. McConnell, T. B., 24(3):

Growth of each individual fish was described temperature and flow regime on the abun- Rhone using Bayesian hierarchical modelling. et al.

